Transforming growth factor-β2 increases extracellular matrix proteins in optic nerve head cells via activation of the Smad signaling pathway
نویسندگان
چکیده
PURPOSE Transforming growth factor-β2 (TGF-β2) is associated with glaucomatous neuropathy, primarily via the increased synthesis and secretion of extracellular matrix (ECM) proteins and remodeling of the optic nerve head (ONH). Here, we investigated the signaling pathways used by TGF-β2 to stimulate ECM expression by ONH astrocytes and lamina cribrosa (LC) cells. METHODS TGF-β2 localization and secretion was examined in human donor tissues and ONH astrocytes and LC cells. To examine TGF-β2 signaling, ONH astrocytes and LC cells were treated with recombinant TGF-β2, and phosphorylation of Smad and non-Smad signaling proteins were examined by western blot analyses and immunostaining. RESULTS TGF-β2 is significantly increased in the LC region of the ONH in glaucomatous eyes compared to age-matched normal eyes (n=4, p<0.0013). ONH astrocytes and LC cells secrete TGF-β2, indicating that these cells may be an in vivo source of TGF-β2 in the human ONH. In addition, treatment of ONH astrocytes and LC cells with exogenous TGF-β2 increased ECM protein synthesis and secretion. With respect to TGF-β2 signaling, recombinant TGF-β2 induced phosphorylation of canonical signaling proteins Smad2/3 but did not alter phosphorylation of non-canonical signaling proteins extracellular signal-regulated kinases (ERK)1/2, p38, and c-Jun N-terminal kinases (JNK)1/2 proteins in ONH astrocytes and LC cells. Exogenous TGF-β2 increased co-localization of pSmad2/3 with Co-Smad4 in the nucleus of ONH astrocytes and LC cells further indicating activation of the canonical Smad signaling pathway. Furthermore, inhibition of TGF-β I receptor activity by SB431542 or inhibition of Smad3 phosphorylation by SIS3 blocked TGF-β2 stimulated ECM expression as well as activation of downstream canonical pathway signaling molecules. Knockdown of either Smad2 or Smad3 via small interfering RNA (siRNA) reduced TGF-β2 stimulated ECM proteins in ONH astrocytes and LC cells. CONCLUSIONS These studies indicate that TGF-β2 utilizes the canonical Smad signaling pathway to stimulate ECM synthesis in human ONH cells. Our studies also indicate that pSmad2/3 is required for TGF-β2 stimulation of ECM remodeling.
منابع مشابه
Osteopontin Is Induced by TGF-β2 and Regulates Metabolic Cell Activity in Cultured Human Optic Nerve Head Astrocytes
The aqueous humor (AH) component transforming growth factor (TGF)-β2 is strongly correlated to primary open-angle glaucoma (POAG), and was shown to up-regulate glaucoma-associated extracellular matrix (ECM) components, members of the ECM degradation system and heat shock proteins (HSP) in primary ocular cells. Here we present osteopontin (OPN) as a new TGF-β2 responsive factor in cultured human...
متن کاملStatins reduce TGF-beta2-modulation of the extracellular matrix in cultured astrocytes of the human optic nerve head.
Statins are cholesterol lowering drugs and have shown beneficial effects on glaucoma. With regard to the mechanism of statin action on glaucoma, we investigated the effects of statins on transforming growth factor-beta 2 (TGF-β2)-induced expression of extracellular matrix (ECM) proteins in human astrocytes of the optic nerve head (ONH) lamina cribrosa (LC). By using primary human ONH astrocytes...
متن کاملRole of TGFbeta/Smad signaling in gremlin induction of human trabecular meshwork extracellular matrix proteins.
PURPOSE The bone morphogenic protein (BMP) antagonist gremlin is elevated in glaucomatous trabecular meshwork (TM) cells and tissues and elevates intraocular pressure (IOP). Gremlin also blocks BMP4 inhibition of transforming growth factor (TGF)-β2 induction of TM extracellular matrix (ECM) proteins. The purpose of this study was to determine whether Gremlin regulates ECM proteins in cultured h...
متن کاملAngiotensin II activates the Smad pathway in vascular smooth muscle cells by a transforming growth factor-beta-independent mechanism.
BACKGROUND Angiotensin II (Ang II) participates in vascular fibrosis. Transforming growth factor-beta (TGF-beta) is considered the most important fibrotic factor, and Smad proteins are essential components of the TGF-beta signaling system. Our aim was to investigate whether Ang II activates the Smad pathway in vascular cells and its potential role in fibrosis, evaluating connective tissue growt...
متن کاملInhibition of transforming growth factor (TGF)-beta1-induced extracellular matrix with a novel inhibitor of the TGF-beta type I receptor kinase activity: SB-431542.
Transforming growth factor beta1 (TGF-beta1) is a potent fibrotic factor responsible for the synthesis of extracellular matrix. TGF-beta1 acts through the TGF-beta type I and type II receptors to activate intracellular mediators, such as Smad proteins, the p38 mitogen-activated protein kinase (MAPK), and the extracellular signal-regulated kinase pathway. We expressed the kinase domain of the TG...
متن کامل